

Transforming Sound into Knowledge

Sequence Note

Noise Cancelling Headphones

Introduction

When measuring noise cancelling headphones there are three important pieces of data to generate. Passive Attenuation is the amount of noise that is reduced at the ear simply by the headphones being worn. Active Attenuation is the amount of noise that is further reduced by turning on the device's active cancellation feature. Lastly, Total Attenuation is the combined reduction in noise from passive and active sources, and is what the end user of the product will experience.

To calculate these metrics this sequence performs three separate measurements using a Head and Torso Simulator and a small speaker which serves as a noise source. The alternative to using the small speaker would be to develop a diffuse environment with multiple speakers playing uncorrelated noise. This is a far more complicated arrangement and would require additional steps in the sequence.

Final Display for Noise Cancelling Headphones sequence

The sequence begins with an option to load example data from disk. If the user selects 'No' a message will appear instructing the user to leave the HATS ears open with no headphones in place. A 10 second pink noise signal is played through the loudspeaker, and the signal at the HATS ear is analyzed with an RTA analysis step. This 1/3rd octave spectrum is called the Un-occluded ear measurement. Next the user is prompted to place the headphones on the HATS but leave the noise cancellation turned off. The pink noise signal is once again played, and the RTA spectrum is called the Occluded ear measurement. Finally the user is instructed to turn on the headphones' noise cancellation, and a third round of the pink noise is played. This final RTA spectrum is called Noise Cancellation Engaged.

These three measurements comprise the raw data in dBSPL versus frequency. Since the speaker has not been calibrated, these spectra will include the response of the speaker. This is not a problem, as the attenuation parameters are all relative calculations based on the three measurements. Passive attenuation is the difference between the occluded and un-occluded measurements. Active attenuation is the difference between the occluded ear and noise cancellation engaged measurements. And lastly, the Total attenuation is the difference between the un-occluded ear measurement and the noise cancellation engaged measurement.

Two graphs are displayed at the end of the sequence showing both the three original measurements and the three calculations derived from the measurements. A table also displays the average of the passive and the active attenuation curves.

Requirements

Software:

- SoundCheck 10.1 or newer
- p/n 2017 Stimulus editor
- p/n 2005 RTA
- p/n 2004 Post Processing

Hardware:

- HATS (B&K 4128 or equivalent)
- Small full range loudspeaker
- p/n 4020 Listen SoundConnect microphone power supply
- Crown D-45 power amplifier (or equivalent)

Hardware Setup & Calibration

- 1. Calibrate the amplifier that the loudspeaker will be connected to as instructed in the SoundCheck manual.
- 2. Calibrate the HATS ear instructed in the SoundCheck manual.
- 3. Connect the channel 1 (or Left) output of your soundcard to the input of the amplifier.
- 4. Connect the output of the amplifier to the loudspeaker.
- 5. Position the loudspeaker about 1 foot away and pointed directly at the HATS' left ear
- 6. Connect the output of the mic supply to the channel 1 (or Left) input of your soundcard.

You are ready to start the sequence.

System diagram

Sequence Logic

Туре	Step Name	#	Out	In	
	(Overall sequence)				
Har	Hardware Default				
Cal	HATS				
Mes	Recall data	1			
	display step				
	jump on fail to # 3: Unoccluded ear				
	overwrite curves				
Rec	Recall curves	2			
	jump on pass to # 15: Curve division				
Mes	Unoccluded ear	3			
Sti	Pink Noise	4	Noise Speaker		
Acq	Play & Record	5	Noise Speaker	HATS Ear L	// Measures un-occluded ear
Ana	RTA	6			
Lim	Test for Signal	7			
Mes	No Acoustical Signal	8			
Mes	Occluded ear	9			
Acq	Play & Record	10	Noise Speaker	HATS Ear L	// Measures occluded ear
Ana	RTA	11	•		
Mes	Noise cancelling circuit on	12			
	C C				// Measures with Active Noise
Acq	Play & Record	13	Noise Speaker	HATS Ear L	Cancellation engaged
Ana	RTA	14			
// The	post processing steps below calculate				
// the	attenuation parameters from either th	e			
// reca	lled data or the measured data.				
Pos	Curve division	15			// Calculate Passive Attenuation
Pos	Curve Average	16			
Pos	Curve division	17			// Calculate Total Attenuation
Pos	Curve division	18			// Calculate Active Attenuation
Pos	Curve Average	19			
Dis	Noise cancelling headphones	20			

Further sequence development

Ways in which you could modify or further develop the sequence include:

- If the loudspeaker serving as the noise source has a relatively flat output, you could calibrate the speaker itself and equalize the noise so that the RTA spectrum at the ear is flat for the un-occluded measurement.
- The entire setup could be modified to work with a diffuse, multi-speaker configuration.
- In a diffuse environment or with two speakers, both ears could be measured at the same time.

580 Harrison Ave, Suite 2A • Boston, MA 02118 • 617-556-4104 • Fax 617-556-4145 • www.listeninc.com